15£®ÒÑÖª$\overrightarrow{m}$=£¨2-sin£¨2x+$\frac{¦Ð}{6}$£©£¬-2£©£¬$\overrightarrow{n}$=£¨1£¬sin2x£©£¬f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$£¬£¨x¡Ê[0£¬$\frac{¦Ð}{2}$]£©
£¨1£©Çóº¯Êýf£¨x£©µÄÖµÓò£»
£¨2£©Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß³¤·Ö±ðΪa£¬b£¬c£¬Èôf£¨$\frac{B}{2}$£©=1£¬b=1£¬c=$\sqrt{3}$£¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©ÀûÓÃƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËã¼°Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óû¯¼ò¿ÉµÃ½âÎöʽf£¨x£©=cos£¨2x+$\frac{¦Ð}{3}$£©+1£¬ÓÉÓàÏÒº¯ÊýµÄÓнçÐÔ¼´¿ÉÇóÖµÓò£®
£¨2£©ÓÉf£¨$\frac{B}{2}$£©=1£¬µÃcos£¨B+$\frac{¦Ð}{3}$£©=0£¬ÓÖ½áºÏ·¶Î§0£¼B£¼¦Ð£¬¼´¿É½âµÃBµÄÖµ£¬ÓÉÕýÏÒ¶¨Àí¿ÉÇósinC£¬½âµÃC£¬½âµÃA£¬¼´¿É½âµÃaµÄÖµ£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨1£©f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$=2-sin£¨2x+$\frac{¦Ð}{6}$£©-2sin2x=2-£¨sin2xcos$\frac{¦Ð}{6}$+cos2xsin$\frac{¦Ð}{6}$£©-£¨1-cos2x£©=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+1=cos£¨2x+$\frac{¦Ð}{3}$£©+1£®          ¡­£¨2·Ö£©
¡ßx¡Ê[0£¬$\frac{¦Ð}{2}$]£¬¡à2x+$\frac{¦Ð}{3}$¡Ê[$\frac{¦Ð}{3}$£¬$\frac{4¦Ð}{3}$]£¬¡à-1¡Ücos£¨2x+$\frac{¦Ð}{3}$£©¡Ü$\frac{1}{2}$£¬´Ó¶øÓÐ0¡Üf£¨x£©¡Ü$\frac{3}{2}$£¬
ËùÒÔº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬$\frac{3}{2}$]£®                   ¡­£¨4·Ö£©
£¨2£©ÓÉf£¨$\frac{B}{2}$£©=1£¬µÃcos£¨B+$\frac{¦Ð}{3}$£©=0£¬ÓÖÒòΪ0£¼B£¼¦Ð£¬ËùÒÔ$\frac{¦Ð}{3}$£¼B+$\frac{¦Ð}{3}$$£¼\frac{4¦Ð}{3}$£¬
´Ó¶øB+$\frac{¦Ð}{3}$=$\frac{¦Ð}{2}$£¬¼´B=$\frac{¦Ð}{6}$£®                     ¡­£¨6·Ö£©
ÒòΪb=1£¬c=$\sqrt{3}$£¬ËùÒÔÓÉÕýÏÒ¶¨Àí$\frac{b}{sinB}=\frac{c}{sinC}$µÃsinC=$\frac{csinB}{b}$=$\frac{\sqrt{3}}{2}$£¬
¹ÊC=$\frac{¦Ð}{3}$»ò$\frac{2¦Ð}{3}$£¬
µ±C=$\frac{¦Ð}{3}$ʱ£¬A=$\frac{¦Ð}{2}$£¬´Ó¶øa=$\sqrt{{b}^{2}+{c}^{2}}$=2£¬
µ±C=$\frac{2¦Ð}{3}$ʱ£¬A=$\frac{¦Ð}{6}$£¬ÓÖB=$\frac{¦Ð}{6}$£¬´Ó¶øa=b=1
×ÛÉÏaµÄֵΪ1»ò2£®¡­£¨12·Ö£©
£¨ÓÃÓàÏÒ¶¨ÀíÀàËƸø·Ö£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËã¼°Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Ó㬿¼²éÁËÓàÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÕýÏÒ¶¨Àí£¬¹´¹É¶¨ÀíµÄÓ¦Óã¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èç¹ûº¯Êýf£¨x£©=£¨a2-2£©xÔÚRÉÏÊǼõº¯Êý£¬ÄÇôʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®|a|£¾$\sqrt{2}$B£®$\sqrt{2}$£¼|a|£¼$\sqrt{3}$C£®|a|£¾$\sqrt{3}$D£®|a|£¼3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªsin2¦Á=$\frac{24}{25}$£¬¦Á¡Ê£¨0£¬$\frac{¦Ð}{4}$£©£¬Ôòsin¦Á-cos¦Á=-$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+2cost\\ y=-\sqrt{3}+2sint\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëƽÃæÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ$2¦Ñsin£¨¦È-\frac{¦Ð}{6}£©=m£¨m¡ÊR£©$£®
£¨¢ñ£©ÇóÔ²CµÄÆÕͨ·½³Ì¼°Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl±»Ô²C½ØµÃµÄÏÒ³¤Îª$2\sqrt{3}$£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª¸´ÊýzÂú×㣨3+4i£©z=25£¬Ôò¸´ÊýzµÄÐ鲿Ϊ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®É輯ºÏA={x|x2-4x¡Ü0£¬x¡ÊR}£¬B={y|y=-x2£¬-1¡Üx¡Ü2}£¬Ôò£¨∁RA£©¡È£¨∁RB£©µÈÓÚ£¨¡¡¡¡£©
A£®RB£®¦µC£®{0}D£®{x|x¡Ù0}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¡÷ABCÖÐDÊÇBC±ßÉϵÄÒ»¸öËĵȷֵ㣬AE£ºEF£ºFC=2£»2£º3£¬ÒÑÖª¡÷DEFµÄÃæ»ýΪ12cm2£¬ÄÇô¡÷ABCµÄÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôº¯Êýf£¨x£©=1og2£¨-x2+2ax+3£©ÔÚÇø¼ä[1£¬2]ÄÚµ¥µ÷µÝ¼õ£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨$\frac{1}{4}$£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2x}{x+1}£¬x¡Ê[{-3£¬-2}]$
£¨1£©ÇóÖ¤£ºf£¨x£©ÔÚ[-3£¬-2]ÉÏÊÇÔöº¯Êý£»
£¨2£©Çóf£¨x£©µÃ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸