【题目】如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD⊥底面ABCD,E为PA的中点,过C,D,E三点的平面与PB交于点F,且PA=PD=AB=2.
(1)证明:;
(2)若四棱锥的体积为,则在线段上是否存在点G,使得二面角的余弦值为?若存在,求的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在,
【解析】
(1)由AB//CD推出CD//平面PAB,利用线面平行的性质可推出CD//EF,又CD⊥AD则;(2)由面面垂直的性质证明PO⊥平面ABCD,即可根据四棱锥的体积及勾股定理求出PO,AD,建立空间直角坐标系,设,由空间向量法利用的余弦值列出方程即可求得.
(1)证明:由题意得,AB//CD,
又AB平面PAB,CD平面PAB,∴CD//平面PAB.
又CD平面CDEF,平面CDEF∩平面PAB=EF,
∴CD//EF,又CD⊥AD,∴EF⊥AD.
(2)取AD的中点为O,连接PO,PA=PD,PO⊥AD,
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,
∴PO⊥平面ABCD,
∴VP-ABCD=AB·AD·PO=,则AD·PO=4,
又PO2+=4,∴PO=,AD=2.
取BC的中点为H,以OA,OH,OP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则P(0,0,),B(,2,0),D(-,0,0),C(-,2,0),
∴=(,2,-), =(0,-2,0).
假设存在点G,设,
∴,则,
∴=((1+λ),2λ,(1-λ)),
设平面GCD的法向量为,
,可取,
又平面的一个法向量,二面角G-CD-B为锐角,
∴,解得λ=或λ=3(舍).
存在点G,使得二面角G-CD-B的余弦值为,此时.
科目:高中数学 来源: 题型:
【题目】已知椭圆()的右焦点为,左右顶点分别为、,,过点的直线(不与轴重合)交椭圆于、点,直线与轴的交点为,与直线的交点为.
(1)求椭圆的方程;
(2)若,求出点的坐标;
(3)求证:、、三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在上单调递增,求实数的取值范围;
(2)若函数有两个不同的零点.
(ⅰ)求实数的取值范围;
(ⅱ)求证:.(其中为的极小值点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应党的号召,坚决打赢脱贫攻坚战,某地区实行了帮扶单位定点帮扶扶贫村脱贫.为了解该地区贫困户对其所提供的帮扶的满意度,随机调查了40个贫困户,得到贫困户的满意度评分如下:
现按贫困户编号从小到大的顺序分组,用系统抽样法从40名贫困户中抽取容量为10的样本.
(1)若在第一分段里随机抽到的第一个样本的评分数据为81,记第二和第十个样本的评分数据分别为a,b,请写出a,b的值;
(2)若10个样本的评分数据分别为92,84,86,78,89,74,83,78,77,89.请你计算所抽到的10个样本的平均数和方差;
(3)在(1)条件下,若贫困户的满意度评分在之间,则满意度等级为“A级”.试应用样本估计总体的思想,用(2)中的样本数据,估计在满意度为“A级”的贫困户中随机地抽取2户,所抽到2户的满意度评分均“超过80”的概率.
(参考数据:,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难题的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(3)定义统计量,其中为第题的实测难度, 为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,平面PBC⊥平面ABC,∠ACB=90°,BC=PC=2,若AC=PB,则三棱锥P﹣ABC体积的最大值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如下表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
60 44 66 44 21
66 06 58 05 62
61 65 54 35 02
42 35 48 96 32
14 52 41 52 48
92 66 22 15 86
96 63 75 41 99
58 42 36 72 24
A.23B.21C.35D.32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)求出易倒伏玉米茎高的中位数;
(2)根据茎叶图的数据,完成下面的列联表:
抗倒伏 | 易倒伏 | |
矮茎 | ||
高茎 |
(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com