精英家教网 > 高中数学 > 题目详情
15.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:

其中可以作为该几何体的俯视图的图形个数是(  )
A.5个B.4个C.3个D.2个

分析 由三视图的定义,结合正视图与侧视图的图形相同,对题目中的图形进行分析,即可得出结论.

解答 解:对于④中的图形,中间是正三角形,它在正视图与侧视图中矩形宽度不一致,
所以④不能作为该几何体的俯视图图形;
对于其他图形,中间图形的正视图与侧视图的矩形宽度一致,可以作为该几何体的俯视图图形.
所以,满足条件的图形个数有①②③⑤共4个.
故选:B.

点评 本题考查了空间中三视图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若函数的解析式为y=x2-2x,它的值域是{-1,3,8},则满足以上条件的函数的个数为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$ax2+2x-lnx,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:关于x的函数y=(2a-1)x在[1,+∞)上是减函数.若“p且q”为真命题,则实数a的取值范围是(  )
A.(-∞,$\frac{2}{3}$]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$]D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则AB与A1C1所成的角为30°,AA1与B1C所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{x^2}-7x-18≤0\\{x^2}+2x-8>0.\end{array}\right.$.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若?p是?q的必要不充分要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,BC边上的中线AD长为3,且BD=2,$sinB=\frac{{3\sqrt{6}}}{8}$.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求cos∠ADC及AC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${x^2}-{log_a}(x+1)<2x-1在(\frac{1}{2},1)$内恒成立,则a的取值范围是(  )
A.$[{({\frac{3}{2}})^{-4}},1)$B.$({({\frac{3}{2}})^{-4}},1)$C.$(1,{({\frac{3}{2}})^4})$D.$(1,{({\frac{3}{2}})^4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线y=x2和直线x=0,x=1,y=$\frac{1}{4}$ 所围成的图形的面积为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案