精英家教网 > 高中数学 > 题目详情

【题目】若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则a的取值范围

【答案】a<﹣4
【解析】解:原不等式2x2﹣8x﹣4﹣a>0可化为:a<2x2﹣8x﹣4,
只须a小于y=2x2﹣8x﹣4在1≤x≤4内的最大值时即可,
∵y=2x2﹣8x﹣4=2(x﹣2)2﹣12
∴y=2x2﹣8x﹣4在1≤x≤4内的最大值是﹣4.
则有:a<﹣4.
所以答案是:a<﹣4
【考点精析】通过灵活运用解一元二次不等式,掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 =(cosx,﹣ ), =(sinx+cosx,1),f(x)=
(1)若0<α< ,sinα= ,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是平行四边形, 平面的中点, 的中点.

(1)求证: 平面

(2),求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:

是定值;②点在某个球面上运动;

③存在某个位置,使;④存在某个位置,使平面.

其中正确的命题是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,ACCDAB=1, ,sin∠BCD.

(1)求BC边的长;

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“随机模拟方法”计算曲线与直线 所围成的曲边三角形的面积时,用计算机分别产生了10个在区间上的均匀随机数和10个区间上的均匀随机数 ),其数据如下表的前两行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得这个曲边三角形面积的一个近似值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和为Sn , 且满足a1=1,an+1=2 +1,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数k,使ak , S2k1 , a4k成等比数列?若存在,求k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数),为自然对数的底数.

(1)当时,求实数的取值范围;

(2)当时,求使得成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

同步练习册答案