【题目】已知函数.
(1)若,求的单调区间;
(2)求函数在上的最值;
(3)当时,若函数恰有两个不同的零点,,求的取值范围.
【答案】(1)在上单调递减,在上单调递增 (2)见解析; (3)
【解析】
(1)根据二次函数以及一次函数的性质求出函数的单调区间即可;
(2)通过讨论a的范围求出函数的最小值和最大值即可;
(3)求出的根,求的表达式,得到其范围即可.
解:(1)当时,
时,函数的对称轴是,开口向上,
故在上单调递减,在上单调递增.
(2),
当时,的对称轴是,
∴在递减,在递增,
而,
如图所示:
∴, ,
当时,对称轴,,
故在递减,在递增,,且对称轴更接近
如图所示:
∴,最大值,
当时,对称轴,,
故在递减,在递增,且对称轴更接近
如图所示
∴,,
当时,在上单调递减,
故,
(3)
当时,令,可得,
(因为,所以舍去)
所以,
在上是减函数,所以.
科目:高中数学 来源: 题型:
【题目】如图,已知是椭圆的左焦点,且椭圆经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线交椭圆于、两点,线段的中点为,过且与垂直的直线与轴和轴分别交于、两点,记、的面积分别为、.若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:“双曲线任意一点到直线的距离分别记作,则为定值”为真命题.
(1)求出的值.
(2)已知直线 关于y轴对称且使得上的任意点到的距离满足为定值,求的方程.
(3)已知直线是与(2)中某一条直线平行(或重合)且与椭圆交于两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为 (为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线与恰有一个公共点.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知曲线上两点,满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,,是曲线段:(是参数,)的左、右端点,是上异于,的动点,过点作直线的垂线,垂足为.
(1)建立适当的极坐标系,写出点轨迹的极坐标方程;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、满足,其中数列的前项和,
(1)若数列是首项为.公比为的等比数列,求数列的通项公式;
(2)若,求证:数列满足,并写出的通项公式;
(3)在(2)的条件下,设,求证中任意一项总可以表示成该数列其它两项之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:(为参数),,为直线上距离为的两动点,点为曲线上的动点且不在直线上.
(1)求曲线的普通方程及直线的直角坐标方程.
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com