【题目】当前,以“立德树人”为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:
(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(2)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差 (各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望. 附:若随机变量服从正态分布,则,,.
科目:高中数学 来源: 题型:
【题目】如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点.
(1)求抛物线的焦点F的坐标及准线的方程;
(2)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,,,,直角梯形可以通过直角梯形以直线为轴旋转得到,且平面平面.
(1)求证:;
(2)设、分别为、的中点,为线段上的点(不与点重合).
(i)若平面平面,求的长;
(ii)线段上是否存在,使得直线平面,若存在求的长,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于A,B两点.
求椭圆的方程;
设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点的坐标;若不存在,说明理由;
设,是线段为坐标原点上的一个动点,且,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中函数,.
(1)求函数在点处的切线方程;
(2)当时,求函数在上的最大值;
(3)当时,对于给定的正整数,问:函数是否有零点?请说明理由.(参考数据,,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…, ()全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为, ,…, ,第二行填入的数字依次为, ,…, .记.
(Ⅰ)当时,若, , ,写出的所有可能的取值;
(Ⅱ)给定正整数.试给出, ,…, 的一组取值,使得无论, ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;
(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
则下列结论正确的是
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线:的焦点为,以为直角顶点的等腰直角的三个顶点,,均在抛物线上.
(1)过作抛物线的切线,切点为,点到切线的距离为2,求抛物线的方程;
(2)求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com