精英家教网 > 高中数学 > 题目详情

……

根据以上事实,由归纳推理可得:

=______.

解析:由已知可归纳如下:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
x+2
(x>0),观察:
 f1(x)=f(x)=
x
x+2

 f2(x)=f(f1(x))=
x
3x+4

 f3(x)=f(f2(x))=
x
7x+8

 f4(x)=f(f3(x))=
x
15x+16


根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
x+1
(x>0)
,观察:f1(x)=f(x)=
x
x+1
f2(x)=f(f1(x))=
x
2x+1
f3(x)=f(f2(x))=
x
3x+1
f4(x)=f(f3(x))=
x
4x+1
,根据以上事实,由归纳推理可得:当n∈N+且n≥2时,fn(x)=f(fn-1(x))=
x
nx+1
x
nx+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
x+2
(x>0)
,观察:f1(x)=f(x)=
x
x+2
f2(x)=f(f1(x))=
x
3x+4
f3(x)=f(f2(x))=
x
7x+8
f4(x)=f(f3(x))=
x
15x+16
…根据以上事实,由归纳推理可得当n∈N*且n≥2时,fn(x)=f(fn-1(x))=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
x+2
(x>0)
,定义fn(x),n∈N如下:当n=1时,f1(x)=f(x);当n∈N且n≥2时,fn(x)=f(fn-1(x)).观察:
f1(x)=f(x)=
x
x+2

f2(x)=f(f1(x))=
x
3x+4

f3(x)=f(f2(x))=
x
7x+8

f4(x)=f(f3(x))=
x
15x+16


根据以上事实,由归纳推理可得:当n∈N时,fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x
x+3
,观察:f1(x)=f(x)=
3x
x+3
f2(x)=f(f1(x))=
3x
2x+3
f3(x)=f(f2(x))=
x
x+1
f4(x)=f(f3(x))=
3x
4x+3
,…
根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

同步练习册答案