精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,对称轴为y轴,且准线方程为直线l过M(1,0)与抛物线交于A,B两点,点P在y轴的右侧且满足(O为坐标原点).
(Ⅰ)求抛物线的方程及动点P的轨迹方程;
(Ⅱ)记动点P的轨迹为C,若曲线C的切线斜率为λ,满足,点A到y轴的距离为a,求a的取值范围.
【答案】分析:(Ⅰ)待定系数法求出抛物线方程,点斜式设出直线l的方程并与抛物线方程联立方程组,得到直线l与物线交于A,B两点的坐标间的关系,由得到点P的坐标与直线斜率k的关系,消去k得到动点P的轨迹方程.
(Ⅱ)先求出曲线C的切线斜率λ的范围,又,用λ表示a,由斜率λ的范围得出a的取值范围.
解答:解:(Ⅰ)由题意知抛物线的方程为
∴p=1,抛物线的方程为x2=2y.(2分)
直线l的斜率不存在时,
直线l与抛物线交于一点,不符合题意.(3分)
于是设直线l的方程为y=k(x-1).
联立
设两交点为A(x1,y1),B(x2,y2).
则△=4k2-8k>0⇒k>2或k<0,(4分)
∴x1+x2=2k,x1x2=2k.(5分)



消去k得y=x2-x.(7分)
又∵P点在y轴的右侧∴x>0,
又∵x=k,k>2或k<0,∴x>2.(8分)
∴动点P的轨迹方程为y=x2-x,(x>0);
(Ⅱ)∵曲线C的方程为y=x2-x,(x>2)
∴切线斜率λ=y=2x-1(x>2).(9分)
∴λ>3.(10分)



∴λx12-2λx1+λ-1=0.
解得(12分)
(13分)
∴a的取值范围是:(14分)
点评:本题考查抛物线方程、轨迹方程的求法,以及向量运算.
练习册系列答案
相关习题

科目:高中数学 来源:天骄之路中学系列 读想用 高二数学(上) 题型:044

已知抛物线C的对称轴与y轴平行,顶点到原点的距离为5,若将抛物线C向上平移3个单位,则在x轴上截得的线段为原抛物线C在x轴上截得的线段的一半;若将抛物线C向左平移1个单位,则所得抛物线过原点,求抛物线C的方程.

查看答案和解析>>

同步练习册答案