【题目】已知函数.
(1)当时,求的单调区间;
(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.
【答案】(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.
【解析】
(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.
(1)函数
由条件得函数的定义域:,
当时,,
所以:,
时,,
当时,,当,时,,
则函数的单调增区间为:,单调递减区间为:,;
(2)由条件得:,,
由条件得有两根:,,满足,
△,可得:或;
由,可得:.
,
函数的对称轴为,,
所以:,;
,可得:,
,
,则:,
所以:;
所以:,
令,,,
则,
因为:时,,所以:在,上是单调递减,在,上单调递增,
因为:,(1),,(1),
所以,;
即的取值范围是:,;
,所以有,
则,;
所以当取到最小值时所对应的的值为;
科目:高中数学 来源: 题型:
【题目】已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.
(1)求曲线的直角坐标方程和的方程化为极坐标方程;
(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左焦点为,是上一点,且与轴垂直,,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.
(1)求椭圆的方程.
(2)若过点的直线,互相垂直,且分别与椭圆交于点,,,四点,求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为F1,F2,过点F1的直线与C交于A,B两点.△ABF2的周长为,且椭圆的离心率为.
(1)求椭圆C的标准方程:
(2)设点P为椭圆C的下顶点,直线PA,PB与y=2分别交于点M,N,当|MN|最小时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com