精英家教网 > 高中数学 > 题目详情
(2010•温州一模)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(I)求t的值;
(II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.
分析:(I)依照条件可知:抛物线过原点,且焦点在y轴上,设抛物线方程为x2=2py,利用焦点为F(0,1),可求得抛物线方程;
(II)当kAP和kAQ不存在时,P或Q其中一点与A重合,一点与A平行于X轴,其中一个斜率为0,一个为无穷大,不符合题意.
设直线AP的斜率为k,则AQ的斜率为-k,可得直线AP,AQ的方程,与抛物线方程联立求得交点坐标,进而可求斜率,从而可得结论.
解答:解:(I)依照条件可知:抛物线过原点,且焦点在y轴上,设抛物线方程为x2=2py 
由条件焦点为F(0,1),得抛物线方程为x2=4y    …(3分)
∴把点A代入x2=4y,得t=1               …(6分)
(II)当KAP和KAQ不存在时,P或Q其中一点与A重合,一点与A平行于X轴,其中一个斜率为0,一个为无穷大,不符合题意.
设直线AP的斜率为k,AQ的斜率为-k,
则直线AP的方程为y-1=k(x-2),即y=kx-(2k-1)
联立方程:
y=kx-(2k-1)
x2=4y

消去y,得:x2-4kx+4(2k-1)=0             …(9分)
∵xAxP=4(2k-1),A(2,1)
∴xP=4k-2
∴yP=4k2-4k+1
同理,得xQ=-4k-2,yQ=4k2+4k+1…(12分)
kPQ
yQ-yP
xQ-xP
=-1
是一个与k无关的定值.…(15分)
点评:本题以抛物线的性质为载体,考查抛物线的标准方程,考查直线与抛物线的位置关系,应掌握定值问题的探究方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•温州一模)已知y=f(x)是奇函数,当x>0时,f(x)=4x则f(-
12
)=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,为DB的中点,
(Ⅰ)证明:AE⊥BC;
(Ⅱ)线段BC上是否存在一点F使得PF与面DBC所成的角为60°,若存在,试确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知a,b是实数,则“a=1且b=1”是“a+b=2”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知α∈(
π
2
,π),sinα=
3
5
,则sin2α等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知B1,B2为椭圆C1
x2
a2
+y2=1(a>1)
短轴的两个端点,F为椭圆的一个焦点,△B1FB2为正三角形,
(I)求椭圆C1的方程;
(II)设点P在抛物线C2:y=
x2
4
-1
上,C2在点P处的切线与椭圆C1交于A、C两点,若点P是线段AC的中点,求AC的直线方程.

查看答案和解析>>

同步练习册答案