精英家教网 > 高中数学 > 题目详情

【题目】某段地铁线路上有A,B,C三站,(千米),(千米),在列车运行时刻表上,规定列车8:00A站出发,8:07到达B站,并停留1分钟,8:12到达C站,并在行驶时以同一速度(千米/分)匀速行驶;列车从A站出发到达某站的时间与时刻表上相应时间差的绝对值,称为列车在该站的运行误差;

1)分别用速度表示列车在B,C两站的运行误差;

2)若要求列车在B,C两站的运行误差之和不超过2分钟,求列车速度的取值范围;

【答案】1| ; |-11|;2[39,]

【解析】

1)因为行驶时以同一速度匀速行驶,列车从站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差,所以可以得到列车在两站的运行误差;

2)根据题意列出在两站的运行误差之和不超过分钟,即可得到关于的不等式,然后求解即可.

1由题意可知:列车从站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.

列车在两站的运行误差(单位:分钟)分别.

2列车在B,C两站的运行误差之和不超过2分钟

①当, ,可变形为:

解得:

②当, ,可变形为:

解得:

综上所述的取值范围是:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为实数,函数.

(1)若是函数的一个极值点,求实数的取值;

(2)设,若,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水域受到污染,水务部门决定往水中投放一种药剂来净化水质,已知每次投放质量为的药剂后,经过)天,该药剂在水中释放的浓度(毫克升)为,其中,当药剂在水中释放浓度不低于(毫克升)时称为有效净化,当药剂在水中释放的浓度不低于(毫克升)且不高于(毫克升)时称为最佳净化.

1)如果投放的药剂质量为,那么该水域达到有效净化一共可持续几天?

2)如果投放的药剂质量为,为了使该水域天(从投放药剂算起,包括第天)之内都达到最佳净化,确定应该投放的药剂质量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g(x)=Acosωx的图象,只需把y=f(x)的图象上所有的点(  )

A. 向右平移个单位长度 B. 向左平移个单位长度

C. 向右平移个单位长度 D. 向左平移个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数存在与直线平行的切线,求实数的取值范围;

(2)当时,,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中;

:实数满足.

Ⅰ)若,为真,求实数的取值范围;

Ⅱ)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)在数列中,若,(为常数),则称为“等方差数列”.下列对“等方差数列”的判断正确的是( )

A.是等差数列,则是等方差数列

B.是等方差数列

C.是等方差数列,则为常数)也是等方差数列

D.既是等方差数列,又是等差数列,则该数列为常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若有两个零点,求的范围;

2)若有两个极值点,求的范围;

3)在(2)的条件下,若的两个极值点为 ,求证: .

查看答案和解析>>

同步练习册答案