【题目】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.
【答案】
【解析】
将正三角形和正三角形沿边展开后使它们在同一平面内,即可得到三点共线时,最小,在三角形中,由余弦定理可求得正四面体的边长为,将正四面体内接于一个正方体中,利用体积差即可求得正四面体的体积为,再以内切球的球心为顶点可将正四面体分成四个等体积的三棱锥,利用等体积法即可求得内切球的半径为,问题得解。
如下图,正方体中作出一个正四面体
将正三角形和正三角形沿边展开后使它们在同一平面内,如下图:
要使得最小,则三点共线,即:,
设正四面体的边长为,在三角形中,由余弦定理可得:
,解得:,
所以正方体的边长为2,正四面体的体积为:,
设四正面体内切球的半径为,由等体积法可得:,
整理得:,解得:,
所以该四面体内切球的体积为.
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数的图象,需对函数的图象所作的变换可以为( )
A. 先将图象上所有点的横坐标压缩为原来的,纵坐标不变,再向右平移个单位
B. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变
C. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变
D. 先向右平移个单位,再将图象上所有点的横坐标伸长为原来的3倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线L: y=x+m与抛物线y2=8x交于A、B两点(异于原点),
(1)若直线L过抛物线焦点,求线段 |AB|的长度;
(2)若OA⊥OB ,求m的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于,两点.
(1)求椭圆的方程;
(2)若是弦的中点,是椭圆上一点,求的面积最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(1)证明:平面;
(2)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2 | 4 | 5 | 6 | 7 |
若由资料知对呈线性相关关系.试求:
(1)求;
(2)线性回归方程;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算的值时,可根据以下公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列中的项按顺序可以排列成如图的形式,第一行项,排;第二行项,从左到右分别排,;第三行项,……以此类推,设数列的前项和为,则满足的最小正整数的值为( )
4,
4,43
4,43,4
4,43,4 , 4
…
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com