精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=2,a2=3,当n≥2时,an+1是an•an-1的个位数,则a2011=
2
2
分析:由数列{an}中,已知a1=2,a2=3,当n≥2时,an+1是an•an-1的个位数,列出数列的前若干项,分析出数列变化规律,进而得到答案.
解答:解:∵a1=2,a2=3,
当n≥2时,an+1是an•an-1的个位数,
∴a3=6,
a4=8,
a5=8,
a6=4,
a7=2,
a8=8,
a9=6,
a10=8,
a11=8,

故数列{an}中,当n≥3时,an的值以6为周期呈周期性变化
又由2011÷6=335…1
故a2011=a1=2
故答案为:2
点评:本题以数列的递推公式为载体考察了数列的周期性,其中分析出数列各项值的变化规律是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}是等差数列;
(Ⅲ)设cn=
3
bnbn+1
,Sn是数列{cn}的前n项和,求使Sn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想数列{an}的通项公式an的表达式;
(2)用适当的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的个位数(n∈N*),若数列{an}的前k项和为2011,则正整数k之值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)记bn=(an-
1
2
2,n∈N+,求证:数列{bn}是等差数列;
(2)求{an}的通项公式;
(3)对?k∈N+,是否总?m∈N+使得an=k?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)计算a2,a3
(Ⅱ)求证:{
an-
1
2
3n
}是等差数列;
(Ⅲ)求数列{an}的通项公式an及其前n项和Sn

查看答案和解析>>

同步练习册答案