精英家教网 > 高中数学 > 题目详情

【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入 (单位:元)与营运天数满足.

(1)要使营运累计收入高于800元,求营运天数的取值范围;

(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?

【答案】(1)要使营运累计收入高于800元,营运天数应该在内取值;(2)每辆单车营运40天,可使每天的平均营运收入最大.

【解析】试题分析:根据题意转化为即可求出结果(2) 每天的平均营运收入表达式为,利用基本不等式求出结果

解析:(1)要使营运累计收入高于800元,则

所以要使营运累计收入高于800元,营运天数应该在内取值.

(2)每辆单车每天的平均营运收入为

当且仅当时等号成立,解得

即每辆单车营运40天,可使每天的平均营运收入最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中, 分别是, 的中点,已知与平面所成的角为 .

1)证明: ∥平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 底面为正方形,已知 ,点 为线段 上任意一点(不含端点),点 在线段 上,且

(1)求证:

(2)若 为线段 中点,求直线 与平面 所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数

(1)若函数处的切线斜率为2的值

(2)求函数的单调区间

(3)若函数有两个极值点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列具有性质;对任意两数中至少有一个是该数列中的一项,给出下列三个结论:

①数列具有性质

②若数列具有性质,则

③若数列具有性质,则

其中,正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位编著. 《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,以“竹筒容米”就是其中一首:家有九节竹一茎,为因盛米不均平;下头三节三升九,上梢四节贮三升;唯有中间二节竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升,要按每节依次盛容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为(

A. B. C. D.

查看答案和解析>>

同步练习册答案