精英家教网 > 高中数学 > 题目详情
19、已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an
(3)设数列{nan}的前n项和为Tn,求Tn
分析:(1)由Sn+1=2λSn+1知S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1,由此可求出λ=1.
(2)由题意可知Sn+1=2•2n-1,∴Sn=2n-1,由此可知an=2n-1
(3)由题意知Tn=1•20+2•21+3•22++(n-1)•2n-2+n•2n-1,2Tn=1•2+2•22++(n-2)•2n-2+(n-1)•2n-1+n•2n,由此可知Tn的值.
解答:解:(1)由Sn+1=2λSn+1得S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1,∴a3=S3-S2=4λ2,∵a3=4,λ>0,∴λ=1.(5分)
(2)由Sn+1=2Sn+1整理得Sn+1+1=2(Sn+1),
∴数列{Sn+1}是以S1+1=2为首项,以2为公比的等比数列,
∴Sn+1=2•2n-1,∴Sn=2n-1,
∴an=Sn-Sn-1=2n-1(n≥2),
∵当n=1时a1=1满足an=2n-1,∴an=2n-1.(10分)
(3)Tn=1•20+2•21+3•22++(n-1)•2n-2+n•2n-1,①2Tn=1•2+2•22++(n-2)•2n-2+(n-1)•2n-1+n•2n,②
①-②得-Tn=1+2+22++2n-2+2n-1-n•2n
则Tn=n•2n-2n+1.(14分)
点评:本题考查数列性质和应用,解题时要注意计算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅱ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,点(n,Sn)在以F(0,
14
)为焦点,以坐标原点为顶点的抛物线上,数列{bn}满足bn=2 an
(1)求数列{an},{bn}的通项公式;
(2)设cn=an×bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案