精英家教网 > 高中数学 > 题目详情
已知α∈(
π
2
,π),cosα=-
4
5
,则tan(α-
π
4
)
等于(  )
A、
1
7
B、7
C、-
1
7
D、-7
分析:由α的范围和cosα的值,利用同角三角函数间的基本关系求出sinα的值,进而求出tanα的值,然后利用两角差的正切函数公式及特殊角的三角函数值化简后,将求出的tanα的值代入即可求出值.
解答:解:由α∈(
π
2
,π),cosα=-
4
5
,得到sinα=
1-(-
4
5
)
2
=
3
5

所以tanα=
sinα
cosα
=-
3
4

则tan(α-
π
4
)=
tanα-tan
π
4
1+tanαtan
π
4
=
-
3
4
-1
1+(-
3
4
) ×1
=-7.
故选D
点评:此题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,灵活运用同角三角函数间的基本关系化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知-
π
2
<x<0,sinx+cosx=
1
5
,求sinxcosx和sinx-cosx的值.
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-
π
2
<x<0,则sinx+cosx=
1
5

(I)求sinx-cosx的值;
(Ⅱ)求
3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
tanx+cotx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
π
2
<α<π,tanα-cotα=
8
3
(1)求tanα的值;(2)求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-
π
2
<x<0
sinx+cosx=
1
5
,则
sinx-cosx
sinx+cosx
等于(  )
A、-7
B、-
7
5
C、7
D、
7
5

查看答案和解析>>

同步练习册答案