精英家教网 > 高中数学 > 题目详情
19.已知sinα=2cosα,求下列各式的值.
(1)sin2α-cos2α:
(2)sin2α+sinαcosα+3.

分析 由条件利用同角三角函数的基本关系求得tanα=2,再利用同角三角函数的基本关系求得要求式子的值.

解答 解:sinα=2cosα,即 tanα=2,
∴(1)sin2α-cos2α=$\frac{{sin}^{2}α{-cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α-1}{{tan}^{2}α+1}$=$\frac{4-1}{4+1}$=$\frac{3}{5}$.
(2)sin2α+sinαcosα+3=$\frac{{sin}^{2}α+sinαcosα}{{sin}^{2}α{+cos}^{2}α}$+3=$\frac{{tan}^{2}α+tanα}{{tan}^{2}α+1}$+3=$\frac{4+2}{4+1}$+3=$\frac{21}{5}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知y=f(x)为偶函数,若f(1)=2,则f(-1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(cos($\frac{π}{2}$+x),sin2x),b=(sin(π+x),$\frac{\sqrt{3}}{2}$).x∈[$\frac{π}{4}$,$\frac{π}{2}$].设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{1}{2}$.
(1)求函数f(x)的单调递增区间:
(2)求函数f(x)的最大值和最小值.并求此时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}的前n项和Sn=n(n+1),则它的第n项an是(  )
A.nB.n(n+1)C.2nD.2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用符号表示下列语句.并画出相应的图形:
(1)点A在平面α内,但点B在平面α外;
(2)直线a经过平面α外的一点M;
(3)直线a既在平面α内,又在平面β内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的通项公式an=An2+B(A、B∈R),且a2=7,a4=31.求an及S4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三个数a=ln2,b=($\frac{5}{3}$)-1,c=2ln2之间的大小关系是(  )
A.a<c<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列不等式组:
(1)$\left\{\begin{array}{l}{2x>1}\\{-3x<2}\end{array}\right.$
(2)$\left\{\begin{array}{l}{-5x-1≥0}\\{4x+2<0}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{1}{2}x>x+1}\\{3x+6≥x-1}\end{array}\right.$
(4)$\left\{\begin{array}{l}{\frac{1}{2}x-\frac{1}{3}x≤1}\\{x-\frac{1}{5}x>2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.阅读下列算法:(1)输入x.(2)判断x>2是否成立,若是,y=x; 否则,y=-2x+6.(3)输出y. 当输入的x∈[0,7]时,输出的y的取值范围是[2,7].

查看答案和解析>>

同步练习册答案