精英家教网 > 高中数学 > 题目详情

已知定点和定直线是定直线上的两个动点且满足,动点满足(其中为坐标原点).

(1)求动点的轨迹的方程;

(2)过点的直线相交于两点

①求的值;

②设,当三角形的面积时,求的取值范围.

; 


解析:

(1)设 (均不为),

 ∥ 得,即                

,即              

 

得  

动点的轨迹的方程为            

(2)①由(1)得的轨迹的方程为,

设直线的方程为,将其与的方程联立,消去.         设的坐标分别为,则,           9分

    

②解法一:,  即

  又 ,   .     可得       

故三角形的面积,            

因为恒成立,所以只要解.

即可解得.     

解法二:

(注意到

又由①有

三角形的面积(以下解法同解法一)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
1
λ

(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.
①若M是圆E:(x-2)2+(y-4)2=64上任意一点,过M作曲线D的切线,切点是N,求|MN|的取值范围;
②已知F,G是曲线D上不同的两点,对于定点Q(-3,0),有|QF|•|QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F(2,0)和定直线l:x=-2,动圆P过定点F与定直线l相切,记动圆圆心P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy上的定点M(2,0)和定直线l:x=-
3
2
,动点P在直线l上的射影为Q,且4(
PQ
+
PM
)•(
PQ
-
PM
)+2
PM
OM
=1

(1)求点P的轨迹C的方程;
(2)设A、B是轨迹C上两个动点,
MA
MB
,λ∈R,∠AOB=θ,请把△AOB的面积S表示为θ的函数,并求此函数的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

已知定点和定直线是定直线上的两个动点且满足,动点满足(其中为坐标原点).

(1)求动点的轨迹的方程;

(2)过点的直线相交于两点

①求的值;

②设,当三角形的面积时,求的取值范围.

查看答案和解析>>

同步练习册答案