精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是平行四边形,平面是棱上的一点,满足平面.

(Ⅰ)证明:

(Ⅱ)设,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.

【答案】(Ⅰ)证明见解析(Ⅱ)

【解析】

)由平面,可得,又因为的中点,即得证;

)如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30°,列出等式,即得解.

)如图,

连接于点,连接

是平面与平面的交线,

因为平面

又因为的中点,

所以的中点,

.

)由条件可知,,所以,故以为坐标原点,轴,轴,轴建立空间直角坐标系,

设平面的法向量为

,即,故取

因为直线与平面所成角的大小为30°

所以

解得,故此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:

时间长(小时)

女生人数

4

11

3

2

0

男生人数

3

17

6

3

1

(1)求这50名学生本周使用手机的平均时间长;

(2)时间长为的7名同学中,从中抽取两名,求其中恰有一个女生的概率;

(3)若时间长为被认定“不依赖手机”,被认定“依赖手机”,根据以上数据完成列联表:

不依赖手机

依赖手机

总计

女生

男生

总计

能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:在区间上有且仅有一个零点,且

2)若当时,不等式恒成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(1由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.

试题解析:1)由正弦定理得

,∴,即

因为,则.

(2)由正弦定理

∴周长

∴当

∴当 周长的最大值为.

型】解答
束】
18

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗均匀的骰子掷两次,第一次得到的点数记为,第一次得到的点数记为,则方程组有唯一解的概率是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,,点分别在线段上,

(1)若,求证:

(2)若二面角的大小为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知平面四边形中,.上,且满足.沿折起,使得平面平面,如图2.

1)若点的中点,证明:平面

2)在(1)的条件下,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为4.

1)求椭圆C的标准方程.

2)设直线l过点(2,0)且与椭圆C相交于不同的两点AB,直线x轴交于点D,E是直线上异于D的任意一点,当时,直线BE是否恒过x轴上的定点?若过,求出定点坐标,若不过,请说明理由。

查看答案和解析>>

同步练习册答案