【题目】设.
(1)求的反函数;
(2)讨论在上的单调性,并加以证明;
(3)令,当时,在上的值域是,求的取值范围.
【答案】(1);(2)见解析;(3)
【解析】
(1)令,由求反函数的规则解出.
(2)复合函数,外层函数的单调性要由底数的取值范围确定,分两类讨论,内层函数的单调性可由定义法证明,再由复合函数的单调性判断出函数的单调性即可.
(3)分类讨论当时,和时两种情况,由(2)中单调性解出的取值范围,并起来即可得到符合条件的参数的取值范围.
(1)令,解得
(2)令,设在上单调递增.
当时,根据复合函数单调性得到在上是减函数.
当时,根据复合函数单调性得到在上是增函数.
综上所述:当时,在上是减函数;当时, 在上是增函数.
(3)当时,在上是减函数,
即有得,即,
可知方程的两个根均大于1,故有
当时,在上是增函数,
(舍去).
综上所述:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆: 的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的
坐标;若不存在说明理由;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中.
若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;
若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次数学知识竞赛中,两组学生成绩如下表:
分数 | 50 | 60 | 70 | 80 | 90 | 100 | |
人数 | 甲组 | 2 | 5 | 10 | 13 | 14 | 6 |
乙组 | 4 | 4 | 16 | 2 | 12 | 12 |
已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点是椭圆的顶点, 为椭圆的左焦点且椭圆经过点.
(1)求椭圆的方程;
(2)过椭圆的右顶点作斜率为的直线交椭圆于另一点,连结并延长交椭圆于点,当的面积取得最大值时,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运动会时,高一某班共有28名同学参加比赛,每人至多报两个项目.15人参加游泳,8人参加田径,14人参加球类.同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,则只参加一个项目的有______人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的普通方程和曲线的直角坐标方程;
(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com