精英家教网 > 高中数学 > 题目详情

【题目】.

1)求的反函数

2)讨论上的单调性,并加以证明;

3)令,当时,上的值域是,求的取值范围.

【答案】1;(2)见解析;(3

【解析】

(1)令,由求反函数的规则解出.

(2)复合函数,外层函数的单调性要由底数的取值范围确定,分两类讨论,内层函数的单调性可由定义法证明,再由复合函数的单调性判断出函数的单调性即可.

(3)分类讨论当时,和时两种情况,由(2)中单调性解出的取值范围,并起来即可得到符合条件的参数的取值范围.

(1),解得

(2),设上单调递增.

时,根据复合函数单调性得到上是减函数.

时,根据复合函数单调性得到上是增函数.

综上所述:当时,上是减函数;当时, 上是增函数.

(3),上是减函数,

即有,,

可知方程的两个根均大于1,故有

,上是增函数,

(舍去).

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆 的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点

(1)求椭圆的方程;

(2)已知的中点,是否存在定点,对于任意的都有,若存在,求出点

坐标;若不存在说明理由;

(3)若过点作直线的平行线交椭圆于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中

若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;

若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,直线过点且依次交抛物线及圆四点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次数学知识竞赛中,两组学生成绩如下表:

分数

50

60

70

80

90

100

人数

甲组

2

5

10

13

14

6

乙组

4

4

16

2

12

12

已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运动会时,高一某班共有28名同学参加比赛,每人至多报两个项目.15人参加游泳,8人参加田径,14人参加球类.同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,则只参加一个项目的有______人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点

)求证:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

查看答案和解析>>

同步练习册答案