精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是______°.
60.

试题分析:在正方体ABCD-A1B1C1D1中,连接D1C, 知D1C//A1B,所以就是异面直线A1B与AC所成的角;连接AD1是正三角形,故=600
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2.
(1)证明:平面BGM⊥平面BFC;
(2)求三棱锥F-BMC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,平面依次是的中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(Ⅰ)当CF=1时,求证:EF⊥A1C;
(Ⅱ)设二面角C-AF-E的大小为θ,求tanθ的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BECF,CE⊥EF,AD=
3
,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱ABC­A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(  ).
A.  B.C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能成立的个数为(  )
A.4 B.3C.2 D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条直线,是两个平面,给出下列命题:①若,则;②若平面上有不共线的三点到平面的距离相等,则;③若为异面直线,,则.其中正确命题的个数(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案