精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线实轴长为6,一条渐近线方程为4x﹣3y=0.过双曲线的右焦点F作倾斜角为 的直线交双曲线于A、B两点
(1)求双曲线的方程;
(2)求线段AB的中点C到焦点F的距离.

【答案】
(1)解:由题得2a=6,

得a=3,b=4,

可得双曲线方程为


(2)解:由题意可得F(5,0),直线AB的方程为y=x﹣5,

联立

消去y,可得7x2+90x﹣369=0,

设A(x1,y1),B(x2,y2),可得

可得中点C的横坐标为

可得C(﹣ ,﹣ ),

F点横坐标为x=5,可得F(5,0),

即有|CF|= =


【解析】(1)运用双曲线的渐近线方程可得 ,结合条件2a=6,可得a,b,进而得到双曲线的方程;(2)求得直线AB的方程,代入双曲线的方程,消去y,可得x的方程,运用韦达定理和中点坐标公式可得C的坐标,再由两点的距离公式计算即可得到所求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分别为棱AB、BC的中点,点F在棱AA1上.
(1)证明:直线A1C1∥平面FDE;
(2)若F为棱AA1的中点,求三棱锥A1﹣DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
(1)利用计算机产生0~1之间的均匀随机数a,则事件“3a﹣1>0”发生的概率为
(2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要条件;
(3)如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;
(4)设 是非零向量,已知命题p:若 ,则 ;命题q:若 ,则 ,则“p∨q”是真命题.
其中说法正确的个数是( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)已知甲船上有男女乘客各3名,现从中任选3人出来做某件事情,求所选出的人中恰有一位女乘客的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知E,F分别是棱长为1的正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个短轴端点是(0,2 ).

(1)求椭圆C的方程;
(2)P(2,3)、Q(2,﹣3)是椭圆上两点,A、B是椭圆位于直线PQ两侧的两动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2 , 若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+)( )的部分图象如图所示.
(1)求函数f(x)的解析式.
(2)函数y=f(x)的图象可以由y=sinx的图象变换后得到,请写出一种变换过程的步骤(注明每个步骤后得到新的函数解析式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱体育运动是否与性别相关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱体育运动

不喜爱体育运动

合计

男生

5

女生

10

合计

50

已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为
(1)请将上面的列联表补充完整(不用写计算过程)
(2)能偶在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由;
下面的临界值表供参考:

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= .其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案