精英家教网 > 高中数学 > 题目详情

【题目】六位同学围成一圈依序循环报数,规定:

①第一位同学首次报出的数为0.第二位同学首次报出的数为1,之后每位同学所报出的数都是前两位同学所报出的数之和:

②若报出的是为3的倍数,则报该数的同学需拍手一次.

当第50个数被报出时,六位同学拍手的总次数为__________.

【答案】13

【解析】

这样得到的数列这是历史上著名的数列,叫斐波那契数列,首先求出这个数列的每一项除以3所得余数的变化规律,再求所求就比较简单了.

解:这个数列的变化规律是:从第三个数开始递增,且是前两项之和,
那么有01123581321345589144233377610987
分别除以3得余数分别是0112022101120221
由此可见余数的变化规律是按01120221循环,
循环周期是8.
在这一个周期内第一个数和第五个数都是3的倍数,

当第50个数被报出时,其中包含6个周期再多2个数,
所以在6个周期内共有12个报出的数是三的倍数,
后面2个报出的数中余数是01 ,只有一个是3的倍数,故3的倍数总共有13个,
也就是说拍手的总次数为13.
故答案为:13.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中,BOAOCO所在直线两两垂直,且AO=CO,∠BAO=60°EAC的中点,三棱锥的体积为

(1)求三棱锥的高;

(2)在线段AB上取一点D,当D在什么位置时,的夹角大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体中,FAB的中点,直线平面.

(Ⅰ)求长方体的体积;

(Ⅱ)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华为董事会决定投资开发新款软件,估计能获得万元到万元的投资收益,讨论了一个对课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过投资收益的.

1)请分析函数是否符合华为要求的奖励函数模型,并说明原因;

2)若华为公司采用模型函数作为奖励函数模型,试确定正整数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知无穷数列的前项和为,若对于任意的正整数,均有,则称数列具有性质.

1)判断首项为,公比为的无穷等比数列是否具有性质,并说明理由;

2)己知无穷数列具有性质,且任意相邻四项之和都相等,求证:;

3)己知,数列是等差数列,,若无穷数列具有性质,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的短轴长和焦距相等,左、右焦点分别为,点满足:.已知直线l与椭圆C相交于AB两点.

1)求椭圆C的标准方程;

2)若直线l过点,且,求直线l的方程;

3)若直线l与曲线相切于点),且中点的横坐标等于,证明:符合题意的点T有两个,并任求出其中一个的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)令,已知函数有两个极值点,且,求实数的取值范围;

3)在(2)的条件下,若存在,使不等式对任意(取值范围内的值)恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,,平面平面.

(1)求证:

(2)若,直线与平面所成角为的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案