精英家教网 > 高中数学 > 题目详情
已知sinα=-
35
,求cosα、tanα的值.
分析:由sinα的值,利用同角三角函数间的基本关系即可求出cosα、tanα的值.
解答:解:∵sinα=-
3
5
,sin2α+cos2α=1,
∴cosα=±
1-sin2α
4
5

当cosα=
4
5
时,tanα=-
3
4
;当cosα=-
4
5
时,tanα=
3
4
点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ=
3
5
θ∈(
π
2
,π)
,求tanθ,cos(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,则cos2α的值为(  )
A、-
24
25
B、-
7
25
C、
7
25
D、
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,且α∈(
π
2
,π)
,那么sin2α等于(  )
A、
12
25
B、-
12
25
C、
24
25
D、-
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,α∈(0,
π
2
)

(1)求cosα的值;
(2)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)已知sinθ=
3
5
θ∈(0,
π
2
)
,求tanθ和cos2θ的值.

查看答案和解析>>

同步练习册答案