精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是ACBC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).

(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线ABDE所成角的余弦值为,求k的值.

(1) . (2) k=

解析试题分析:解:(Ⅰ) 过D点作DGACG,连结BG

ADCD, BDCD,
∴ ∠ADB是二面角A-CD-B的平面角.
∴ ∠ADB=, 即BDAD.
BD⊥平面ADC. ∴ BDAC.
AC⊥平面BGD. ∴ BGAC .
∴ ∠BGD是二面角B-AC-D的平面角.
ADC中,AD=aDC=, AC=2a,
.
RtBDG中,.
.
即二面角B-AC-D的大小为.   
(Ⅱ) ∵ ABEF, ∴ ∠DEF(或其补角)是异面直线ABDE所成的角.
,∴ .
DC=,


 
.
. 解得 k=.
考点:异面直线所成的角,以及二面角度求解
点评:解决该试题的关键是能利用定义求作角,结合三角形来求解得到结论,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。

(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。

(Ⅰ)求证:     
(Ⅱ) 求证:
(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知直三棱柱中,△为等腰直角三角形,∠ =,且分别为的中点.

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:

查看答案和解析>>

同步练习册答案