精英家教网 > 高中数学 > 题目详情
15.已知角$θ∈(\frac{3π}{4},π)$且$sinθcosθ=-\frac{{\sqrt{3}}}{2}$,则 cosθ-sinθ的值为(  )
A.-$\sqrt{1+\sqrt{3}}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{2+\sqrt{3}}}{2}$D.±$\frac{{1+\sqrt{3}}}{2}$

分析 由题意可得θ为钝角,根据cosθ-sinθ=-$\sqrt{{(cosθ-sinθ)}^{2}}$,计算求得结果.

解答 解:∵角$θ∈(\frac{3π}{4},π)$且$sinθcosθ=-\frac{{\sqrt{3}}}{2}$,∴θ为钝角,
则 cosθ-sinθ=-$\sqrt{{(cosθ-sinθ)}^{2}}$=-$\sqrt{1-2sinθcosθ}$=-$\sqrt{1+\sqrt{3}}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|x+m|+|2x+1|.
(Ⅰ)当m=-1,解不等式f(x)≤3;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在正方体ABCD-A1B1C1D1中,M、N分别是棱BC、CC1的中点.
( 1 )求证:MN∥面AB1D1
(文科)(2)若正方体边长为2,求三棱锥${\;}_{{A}_{1}-{B}_{1}A{D}_{1}}$的体积.
(理科)(2)求二面角D-MN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.a=-6是直线l1:ax+(1-a)y-3=0和直线l2:(a-1)x+2(a+3)y-2=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的方程为2x+my-4m-4=0,m∈R,点P的坐标为(-1,0).
(1)求证:直线l恒过定点,并求出定点坐标;
(2)设点Q为直线l上的动点,且PQ⊥l,求|PQ|的最大值;
(3)设点P在直线l上的射影为点A,点B的坐标为($\frac{9}{2}$,5),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}的通项公式为an=-n2+9n,则该数列第4或5项最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将函数f(x)=$\sqrt{x}$中的自变量x用x=g(t)替换,替换后所得的函数F(t)=$\sqrt{g(t)}$与原函数f(x)的值域相同,则函数g(t)可以是下列函数中的①③④(请填写所有满足条件的g(t)的编号).
①g(t)=t${\;}^{\frac{1}{2}}$;②g(t)=2t;③g(t)=3t-5;④g(t)=($\frac{1}{2}$)t-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.矩阵的一种运算$({\begin{array}{l}a&b\\ c&d\end{array}})({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}{ax+by}\\{cx+dy}\end{array}})$,该运算的几何意义为平面上的点(x,y)在矩阵$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下变换成点(ax+by,cx+dy),若曲线x2+4xy+2y2=1在矩阵$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下变换成曲线x2-2y2=1,则ab=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某工厂组织工人技能培训,其中甲、乙两名技工在培训时进行的5次技能测试中的成绩如图茎叶图所示.
(1)现要从中选派一人参加技能大赛,从这两名技工的测试成绩分析,派谁参加更合适;
(2)若将频率视为概率,对选派参加技能大赛的技工在今后三次技能大赛的成绩进行预测,记这三次成绩中高于85分的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案