【题目】已知定义在R上的函数f(x),满足 ,且f(3)=f(1)﹣1.
(1)求实数k的值;
(2)若函数g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.
【答案】
(1)解:由题意可得f(1)﹣1=1+2﹣1=2,
f(3)=f(﹣1+4)=f(﹣1)=2,
所以可得
(2)解:由 得:
,
∴ ,
当0<x<2时,1<x+1<3,
所以
在(x+1)2=4即x=1处取得最小值,
所以g(x)在(0,1)处单调递减,
在[1,2)上单调递增,
,
当x→2时, ,
所以g(x)在(0,2)上的值域为[5,6).
当﹣2<x<0时,1<1﹣x<3,
∴ ;
当(1﹣x)2=4,即x=﹣1时取得最小值;
当x→﹣2时, ;
当x→0时, ,
∴g(x)在(﹣2,0)上的值域为[5,6).
综上所述,g(x)的值域为
【解析】(1)由已知中函数f(x),满足 ,且f(3)=f(1)﹣1,构造方程,解得实数k的值;(2)函数 ,分类讨论各段上函数值的范围,可得答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)△ABC的内角分别是A,B,C,若f(A)=1,cosB= ,求sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,若方程f(x+1)=|x2+2x﹣3|的实根分别为x1 , x2 , …,xn , 则x1+x2+…+xn=( )
A.n
B.﹣n
C.﹣2n
D.﹣3n
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .
(1)求曲线C1 , C2的直角坐标方程;
(2)已知点P,Q分别是线C1 , C2的动点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E,F分别为PC,BD的中点.
求证:(1)EF∥平面PAD;
(2)PA⊥平面PDC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com