精英家教网 > 高中数学 > 题目详情

ab是实数,则下列四个命题中正确的是( )

  A.若ab,则a2b2

  B.若|a||b|,则ab

  C.若a|b|,则a2b2

  D.若a2b2,则ab

答案:C
提示:

排除法。


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,F(x)=
f(x) (x>0)
-f(x) (x<0)
,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列事件是随机事件的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)设集合s为非空实数集,若数η(ξ)满足:
(1)对?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)对?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最小(最大)上界(下界),则称数η(ξ)为数集S的上(下)确界,记作η=supS(ξ=infS).
给出如下命题:
①若 S={x|x2<2},则 supS=-
2

②若S={x|x=n|,x∈N},则infS=l;
③若A、B皆为非空有界数集,定义数集A+B={z|z=x+y,x∈A,y∈B},则sup(A+B)=supA+supB.
其中正确的命题的序号为
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

       对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0f(x)的不动点  已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2时,求f(x)的不动点;

(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图像上A、B两点的横坐标是函数f(x)的不动点,且AB关于直线y=kx+对称,求b的最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市人大附中高一(上)模块数学试卷(必修1)(解析版) 题型:解答题

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

同步练习册答案