精英家教网 > 高中数学 > 题目详情
(2012•即墨市模拟)已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F是线段BC的中点.H为PD中点.
(1)证明:FH∥面PAB;
(2)证明:PF⊥FD.
分析:(1)证明FH∥面PAB,利用线面平行的判定,证明线线平行即可;
(2)连接AF,由勾股定理可得DF⊥AF,由PA⊥平面ABCD,由线面垂直性质定理可得DF⊥PA,再由线面垂直的判定定理得到DF⊥平面PAF,再由线面垂直的性质定理得到PF⊥FD.
解答:证明:(1)取PA的中点G,连接GB,GH,则
∵底面ABCD是矩形,H为PD中点
∴GH∥BF,GH=BF
∴四边形BFHG是平行四边形
∴FH∥BG
∵FH?面PAB,BG?面PAB
∴FH∥面PAB;
(2)连接AF,则AF=
2
a
,DF=
2
a

∵AD=2a,∴DF2+AF2=AD2
∴DF⊥AF
∵PA⊥平面ABCD,
∴DF⊥PA,又PA∩AF=A,
∴DF⊥平面PAF,
∵PF?平面PAF,
∴DF⊥PF
点评:本题考查线面平行,考查线线垂直,解题的关键是掌握线面平行的判定,利用线面垂直的性质证明线线垂直,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•即墨市模拟)若抛物线y2=8x的焦点是F,准线是l,则经过点F、M(3,3)且与l相切的圆共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)若tanα=
1
4
,则
cos2α
sin2α
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)设函数f(x)=cos(2x-
π
6
)
,则下列结论正确的是(  )
①f(x)的图象关于直线x=
π
3
对称;
②f(x)的图象关于点(
π
4
,0)
对称;
③f(x)的图象向左平移
π
12
个单位,得到一个偶函数的图象;
④f(x)的最小正周期为π,且在[-
π
6
,0]
上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)在△ABC中,AB=BC=1,∠ABC=120°,则
AB
•(
CB
+
BA
)
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)等差数列{an}中,a1、a2、a3分别是下表第一、二、三列中的某个数,且a1、a2、a3中的任何两个数不在下表的同一行.
第一列 第二列 第三列
第一行 0 2 -1
第二行 2 0 5
第三行 1 3 -3
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
an
2n-1
}
的前n项和.

查看答案和解析>>

同步练习册答案