精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,,且在平面上的射影在线段

)求证:

)设二面角,求的余弦值

【答案】详见解析

【解析】

试题分析:证明线线垂直,一般利用线面垂直性质定理进行论证;因为在平面上的射影在线段上,所以,又根据勾股定理可得因此二面角,一般方法为利用空间向量,先根据题意建立空间直角坐标系设立点坐标利用方程组解出各面法向量,再根据向量数量积求法向量夹角,最后根据二面角与法向量之间相等或互补的关系求二面角

试题解析:)证明:

)解:(法一)作垂足为,连接

为二面角的平面角

中,

中,

,又,又

(法二)在中,

中,

,又

如图建立直角坐标系,

平面的法向量为

平面的法向量为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用 ②子女教育费用 ③继续教育费用 ④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月共扣除2000 ②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:

级数

全月应纳税所得额

税率

1

不超过3000元的部分

3%

2

超过3000元至12000元的部分

10%

3

超过12000元至25000元的部分

20%

现有李某月收入18000元,膝下有两名子女,需要赡养老人,(除此之外,无其它专项附加扣除,专项附加扣除均按标准的100%扣除),则李某月应缴纳的个税金额为(

A.590B.690C.790D.890

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以椭圆的中心O为圆心,以为半径的圆称为该椭圆的伴随.已知椭圆的离心率为,且过点

1)求椭圆C及其伴随的方程;

2)过点伴随的切线l交椭圆CAB两点,记为坐标原点)的面积为,将表示为m的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,,.

(Ⅰ)求证:

(Ⅱ)若与平面所成的角为,点的中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.

1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;

2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?

是否做操

是否近视

不做操

做操

近视

44

32

不近视

6

18

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)写出曲线的极坐标方程;

2)在极坐标系中,已知的公共点分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

同步练习册答案