分析 化简集合A,B.(1)A∪B=A,可得B⊆A,从而可得不等式,即可求实数a的取值范围;
(2)先求∁RB,再利用A⊆(∁RB),建立不等式,即可求实数a的取值范围.
解答 解:由不等式$\frac{x}{4-x}$≥0,可得0≤x<4,∴A={x|0≤x<4};由|x+a-$\frac{3}{2}$|≤$\frac{1}{2}$,可得1-a≤x≤2-a,∴B={x|1-a≤x≤2-a}.
(1)A∪B=A,∴B⊆A,∴$\left\{\begin{array}{l}{1-a≥0}\\{2-a<4}\end{array}\right.$,∴-2<a≤1;
(2)∁RB=|x|x<1-a或x>2-a},∵A⊆(∁RB),∴1-a≥4或2-a<0,
∴a≤-3或a>2.
点评 本题考查不等式的化简,考查集合的关系与运算,正确化简集合是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (m+n)${\;}^{\frac{4}{3}}$ | B. | m${\;}^{\frac{3}{4}}$+n${\;}^{\frac{3}{4}}$ | C. | (m+n)${\;}^{\frac{3}{4}}$ | D. | m${\;}^{\frac{4}{3}}$+n${\;}^{\frac{4}{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com