分析 由题意,设|AF|=m,|BF|=n,则$\frac{1}{m}+\frac{1}{n}=\frac{2}{p}$=1,利用基本不等式可求m+4n的最小值时,m=2n.设过F的直线方程,与抛物线方程联立,整理后,设A(x1,y1),B(x2,y2)根据韦达定理可求得x1x2=1,x1+x2=2+$\frac{4}{{k}^{2}}$
根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1,即可得出结论.
解答 解:由题意,设|AF|=m,|BF|=n,则$\frac{1}{m}+\frac{1}{n}=\frac{2}{p}$=1,
∴m+4n=($\frac{1}{m}$+$\frac{1}{n}$)(m+4n)=5+$\frac{4n}{m}$+$\frac{m}{n}$≥9,
当且仅当m=2n时,m+4n的最小值为9,
设直线的斜率为k,方程为y=k(x-1),代入抛物线方程,得 k2(x-1)2=4x.
化简后为:k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2)
则有x1x2=1,x1+x2=2+$\frac{4}{{k}^{2}}$
根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1,
∴x1+1=2(x2+1),
联立可得k=±2$\sqrt{2}$.
故答案为:±2$\sqrt{2}$.
点评 本题考查抛物线的性质和应用,正确运用基本不等式是关键.对于过抛物线焦点的直线与抛物线关系,常用抛物线的定义来解决.
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0条 | B. | 1条 | C. | 2条 | D. | 无数条 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 22-n | B. | 2n-2 | C. | 2n+2 | D. | 2-n-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,2] | B. | (-2,2] | C. | (-2,2) | D. | (-∞,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com