精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)求函数的最小正周期和单调递增区间;

2)当时,的最大值为2,求的值,并求出的对称轴方程.

【答案】1;(2的对称轴方程为

【解析】试题分析:(1)求三角函数的最小正周期一般化成形式,利用周期公式即可.2)求解较复杂三角函数的单调区间时,首先化成形式,再的单调区间,只需把看作一个整体代入相应的单调区间,注意先把化为正数,这是容易出错的地方. ,(3)(2)求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围;(4)求函数的对称轴方程时,可以把看做整体,代入相应的对称轴即可

试题解析:(1

的最小正周期

且当单调递增.

的单调递增区间

(写成开区间不扣分).

2)当,当,即

所以

的对称轴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,以向量 为邻边作平行四边形OADB, ,用 表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如表所示:

(Ⅰ)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(Ⅱ)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)=
(1)若a= ,求sinαcosα+tanα﹣ 的值;
(2)若a= ,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项为a,公差为b,且不等式ax2﹣3x+2>0的解集为(﹣∞,1)∪(b,+∞)
(1)求数列{an}的通项公式
(2)设数列{bn}满足= ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:x2+y2=m与圆C2:x2+y2﹣6x﹣8y+16=0相外切.
(1)求m的值;
(2)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点且在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x﹣9y﹣8=0与曲线C:y=x3﹣px2+3x相交于A,B,且曲线C在A,B处的切线平行,则实数p的值为(
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O是△ABC内一点,若 , 则△AOC与△ABC的面积的比值为 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点,焦点在坐标轴上,且经过三点.

(1)求椭圆的方程;

(2)在直线上任取一点,连接,分别与椭圆交于两点,判断直线是否过定点?若是,求出该定点.若不是,请说明理由.

查看答案和解析>>

同步练习册答案