精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.

【答案】
(1)解:由于直线x=4与圆C1不相交;

∴直线l的斜率存在,设l方程为:y=k(x﹣4)

圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2

∴d= =1

d= 从而k(24k+7)=0即k=0或k=﹣

∴直线l的方程为:y=0或7x+24y﹣28=0


(2)解:设点P(a,b)满足条件,

由题意分析可得直线l1、l2的斜率均存在且不为0,

不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0

则直线l2方程为:y﹣b=﹣ (x﹣a)

∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,

∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等

=

整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|

∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5

因k的取值有无穷多个,所以

解得

这样的点只可能是点P1 ,﹣ )或点P2(﹣


【解析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2 ,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.
【考点精析】本题主要考查了一般式方程的相关知识点,需要掌握直线的一般式方程:关于的二元一次方程(A,B不同时为0)才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四边形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ,试求x与y满足的关系式;
(2)满足(1)同时又有 ,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x)+f(2﹣x)=2,当x∈(0,1]时,f(x)=x2 , 当x∈(﹣1,0]时, ,若定义在(﹣1,3)上的函数g(x)=f(x)﹣t(x+1)有三个不同的零点,则实数t的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a﹣b|.
(1)求ξ=1的概率;
(2)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中日岛争端越来越引起社会关注,校对高一名学生进行了一次知识测试,并从中了部学生的成绩满分作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图

1填写答题卡频率分布表中的空格, 补全频率分布直方图, 并标出每个小矩形对应的纵轴数据;

2请你估算该年级的平均数及中位数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中, 底面的重心, 为线段上一点,且平面,则直线所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆上任意一点,点的坐标为,直线分别与线段交于两点,且.

1)求点的轨迹的方程;

2)直线与轨迹相交于两点,设为坐标原点, ,判断的面积是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

同步练习册答案