精英家教网 > 高中数学 > 题目详情
在△ABC,a=
2
,b=
3
,B=
π
3
,则A等于(  )
A、
π
6
B、
π
4
C、
4
D、
π
4
4
考点:正弦定理
专题:三角函数的求值,解三角形
分析:由a,b及sinB的值,利用正弦定理即可求出sinA的值,根据A的范围,利用特殊角的三角函数值即可求出A的度数.
解答: 解:由正弦定理可得:sinA=
asinB
b
=
2
×sin
π
3
3
=
2
2

∵a=
2
<b=
3

0<∠A<
π
3

∴∠A=
π
4

故选:B.
点评:此题考查学生灵活运用正弦定理及特殊角的三角函数值化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosA=-
8
17
,且A为第二象限角.
(1)求A的其它函数值.
(2)证明:sinA(1+cos2A)=sin2AcosA.

查看答案和解析>>

科目:高中数学 来源: 题型:

海上有三只船A,B,C,其中船,B相距10
2
,从船A处望船B和船C所成的视角为60°,从船B处望船A和船C所成的视角为75°,则船B和船C之间的距离BC=(  )
A、10
B、10
3
C、20
D、10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xcosx2在区间[0,4]上的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产一种机器的固定成本(即固定投入)为6万元,但生产一百台需要另增加0.5万元.市场对此产品的年需求量为7百台(年产量可以多于年需求量),销售的收入函数为R(x)=7x-
x2
2
(0≤x≤7)(单位:万元),其中x是产品年生产量(单位:百台),且x∈N.
(Ⅰ)把利润表示为年产量的函数;
(Ⅱ)年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
3
-tan
4
+
3
4
tan2(-
π
6
)
+cos2
6
+sin
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现有9张扑克牌,其中有黑桃3张、红桃4张、梅花2张,从中任意抽取2张,每张牌被抽到的可能性都相等.
(Ⅰ)求抽取到的2张牌花色不同的概率;
(Ⅱ)设X表示被抽到的2张牌中花色为红桃的张数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

x
是未知向量,解方程2
x
-(5
a
+3
x
-4
b
)+
1
2
a
-3
b
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

如果关于x的不等式ax2-4|x+1|+2a<0无实数根,则a的取值范围是
 

查看答案和解析>>

同步练习册答案