精英家教网 > 高中数学 > 题目详情
10.如图,在平面四边形ABCD中,AB=5$\sqrt{2}$,∠CBD=75°,∠ABD=30°,∠CAB=45°,∠CAD=60°.
(I)求AC的长;
(Ⅱ)求CD的长.

分析 (1)由题意在△BAC中由正弦定理可得AC;
(2)在△BAD中由正弦定理可得BD,由和差角公式可得cos75°,由余弦定理可得CD.

解答 解:(1)由题意可得∠ACB=180°-(75°+30°+45°)=30°,
在△BAC中,由正弦定理可得AC=$\frac{sin105°}{sin30°}×5\sqrt{2}$=5($\sqrt{3}$+1);
(2)在△BAD中,由正弦定理可得BD=$\frac{5\sqrt{2}×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{2}}{2}}$=$\frac{5(\sqrt{6}+\sqrt{2})}{2}$,
又cos75°=cos(30°+45°)=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
∴由余弦定理可得CD2=BC2+BD2-2BC•BDcos∠CBD
=100+[$\frac{5(\sqrt{6}+\sqrt{2})}{2}$]2-2×10×$\frac{5(\sqrt{6}+\sqrt{2})}{2}$×$\frac{\sqrt{6}-\sqrt{2}}{4}$=100+25$\sqrt{3}$,
∴CD=5$\sqrt{4+\sqrt{3}}$.

点评 本题考查三角形中的几何计算,涉及正余弦定理和和差角的三角函数公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.圆C:x2+(y+3)2=8关于直线y=x的对称曲线为曲线C′,直线y=x+m-3与曲线C′交于A、B两点,O是坐标原点,△ABO的面积为$\sqrt{7}$.
(1)求曲线C′的方程.
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义域为R的奇函数,若?x∈R,f′(x)>-2,则不等式f(x-1)<x2(3-2lnx)+3(1-2x)的解集是(  )
A.(0,1)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.记min{a,b,c}为实数a,b,c中最小的一个,已知函数f(x)=-x+1图象上的点(x1,x2+x3)满足:对一切实数t,不等式-t2-${2}^{{x}_{1}^{2}}$t-2${\;}^{2+{x}_{1}^{2}-{x}_{2}^{2}-{x}_{3}^{2}}$+4${\;}^{2-{x}_{2}^{2}-{x}_{3}^{2}}$≤0均成立,如果min{-x1,-x2,-x3}=-x1,那么x1的取值范围是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,且csinC-bsinB=(a-b)sinA.
(1)求角C;
(2)若c=5,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y的满足$\left\{\begin{array}{l}x-y+3≥0\\ x+y-3≥0\\ x≥1.\end{array}\right.$,则z=2x-y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是计算$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2016}$的程序框图,判断框内的条件是n≤2016?.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,∠ABC=90°,且CD=2AB,点E在棱PB上,且PE=2EB,PA=AB=BC.
(1)求证:PD∥平面AEC;
(2)若PA=3,求三棱锥P-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的3名同学来自不同班级的概率;
(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案