精英家教网 > 高中数学 > 题目详情

【题目】如图,在极坐标系中,,弧所在圆的圆心分别是,曲线是弧,曲线是线段,曲线是线段,曲线是弧.

(1)分别写出的极坐标方程;

(2)曲线构成,若点,(),在上,则当时,求点的极坐标.

【答案】(1)线的极坐标方程为:的极坐标方程为:,的极坐标方程分别为:;(2)

.

【解析】

(1)在极坐标系下,在曲线上任取一点,直角三角形中,

,曲线的极坐标方程为:,同理可得其他.

(2)当时,,当

计算得到答案.

(1)解法一:在极坐标系下,在曲线上任取一点,连接

则在直角三角形中,,得:.

所以曲线的极坐标方程为:

又在曲线上任取一点,则在中,

,由正弦定理得:

即:,化简得的极坐标方程为:

同理可得曲线,的极坐标方程分别为:

解法二:(先写出直角坐标方程,再化成极坐标方程.)

由题意可知的直角坐标方程为:

所以的极坐标方程为:

(2)当时,

当时

所以点的极坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据:

年份

2006

2008

2010

2012

2014

需求量/万吨

236

246

257

276

286

1)利用所给数据求年需求量与年份之间的线性回归方程

2)利用(1)中所求出的线性回归方程预测该地2018年的粮食需求量.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市名居民的工作场所和呼吸系统健康,得到列联表如下:

室外工作

室内工作

合计

有呼吸系统疾病

无呼吸系统疾病

合计

(Ⅰ)补全列联表;

(Ⅱ)你是否有的把握认为感染呼吸系统疾病与工作场所有关;

(Ⅲ)现采用分层抽样从室内工作的居民中抽取一个容量为的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.

临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,且椭圆的一个顶点与抛物线的焦点重合,离心率为.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点且斜率存在的直线交椭圆两点,线段的垂直平分线交轴于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为轴,直线轴于点,为椭圆上的动点,的面积的最大值为1.

(1)求椭圆的方程;

(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:

体长(厘米)

频数

40

50

110

160

120

20

(1)将王锦蛇的体长在各组的频率视为概率,赵先生欲从此基地随机购买3条王锦蛇,求至少有2条体长不少于200厘米的概率.

(2)为了拓展销售市场,该养殖基地决定购买王锦蛇与乌梢蛇两类成年母蛇用于繁殖幼蛇,这两类蛇各200条的相关信息如下表.

繁殖年限(年)

3

4

5

6

王锦蛇(条)

20

60

80

40

乌梢蛇(条)

30

80

70

20

若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,不等式成立,则实数k的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()时,求曲线在点处的切线方程;

()时,若在区间上的最小值为-2,其中是自然对数的底数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若x轴为曲线的切线,求a的值

(Ⅱ)求函数上的最大值和最小值

查看答案和解析>>

同步练习册答案