(满分16分)
设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.
(1)若数列的前项和为,证明:是“数列”.
(2)设是等差数列,其首项,公差,若是“数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“数列” 和,使得成立.
科目:高中数学 来源: 题型:解答题
已知等差数列满足:=2,且成等比数列.
(1)求数列的通项公式.
(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1).
(1)求证:数列是等差数列;
(2)求数列{|bn|}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com