精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①将的图象向右平移个单位长度后得到函数图象关于原点对称;②点图象的一个对称中心;③;④在区间上单调递增.其中正确的结论为(

A.①②B.②③C.②④D.①④

【答案】C

【解析】

先由函数周期性与对称轴,求出函数解析式为,根据三角函数的平移原则,正弦函数的对称性与单调性,逐项判断,即可得出结果.

因为函数的最小正周期为,其图象关于直线对称,

所以,解得

因为,所以,因此

①将的图象向右平移个单位长度后函数解析式为

,所以其对称中心为:,故①错;

②由,解得,即函数的对称中心为;令,则,故②正确;

,故③错;

④由

即函数的增区间为,因此在区间上单调递增.即④正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递增,求实数的取值范围;

2)若函数处的切线平行于轴,是否存在整数,使不等式时恒成立?若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,AB=2,∠BAD=60°MPD的中点.

(Ⅰ)求证:OM∥平面PAB

(Ⅱ)平面PBD⊥平面PAC

(Ⅲ)当三棱锥CPBD的体积等于 时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面,底面是边长为的正方形,交于点交于点,且.

(Ⅰ)证明:平面

(Ⅱ)求的长度;

(Ⅲ)求直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )

A.7班、14班、15B.14班、7班、15

C.14班、15班、7D.15班、14班、7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,垂直于所在的平面的直径,是弧上的一个动点(不与端点重合),上一点,且是线段上的一个动点(不与端点重合).

(1)求证:平面

(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程及直线的普通方程;

2)设直线与曲线交于两点(点在点左边)与直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥的底面边长为分别为的中点.

1)当时,证明:平面平面

2)若平面与底面所成锐二面角为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案