如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于该半圆所在的平面,且.
(Ⅰ)求证:;
(Ⅱ)设平面与半圆弧的另一个交点为.
①试证:;
②若,求三棱锥的体积.
科目:高中数学 来源: 题型:解答题
如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点.
(1)求证:EF//平面A′BC;
(2)求直线A′B与平面A′DE所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.
(1)证明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.
(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.
(Ⅰ)求证:BFAD;
(Ⅱ)求直线BD与平面BCF所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com