(理科题)(本小题12分)
某房产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元。
(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案①年平均利润最大时以46万元出售该楼;
②纯利润总和最大时,以10万元出售楼,问选择哪种方案盈利更多?
(1)从第4年开始获取纯利润。
(2)两种方案获利一样多,而方案(1)时间比较短,所以选择方案(1)。
【解析】
试题分析:(1)设第n年获取利润为y万元,n年共收入租金30n万元.付出装修费共 ,付出投资81万元,由此可知利润y=30n-(81+n2),由y>0能求出从第几年开始获取纯利润.
(2)①纯利润总和最大时,以10万元出售,利用二次函数的性质求出最大利润,方案②利用基本不等式进行求解,当两种方案获利一样多,就看时间哪个方案短就选择哪个..
(1)设第年获取利润为万元。………………1分
年共收租金30万元,付出装修费构成一个以1为首项,2为公差的等差数列,
共…………………2分
因此利润令……………4分
解得……………5分
所以从第4年开始获取纯利润。………………6分
(2)年平均利润………………8分
………………9分
(当且仅当)所以9年后共获利润:154万元。……………10分
利润
所以15年后共获利润:144+10=154万元……………………11分
两种方案获利一样多,而方案(1)时间比较短,所以选择方案(1)。…………………12分
考点:函数的模型及其应用。
点评:本题是函数模型选取问题,在直接比较不能凑效的前提下可考虑作差法比较.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.
(1)求证:方程f(x)=0有且只有一个实根;
(2)若a>b>c>1,且a、b、c成等差数列,求证:;
(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省南京六中高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
科目:高中数学 来源:2014届福建福州文博中学高二上学期期中考试数学试卷(解析版) 题型:解答题
(理科题)(本小题12分)
已知数列{an}是等差数列,a2=3,a5=6,数列{bn}的前n项和是Tn,且Tn+bn=1.
(1)求数列{an}的通项公式与前n项的和;
(2)求数列{bn}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com