精英家教网 > 高中数学 > 题目详情

【题目】对某班50人进行智力测验,其得分如下:

48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,55,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.

(1)这次测试成绩的最大值和最小值各是多少?

(2)[30,100)平分成7个小区间,试画出该班学生智力测验成绩的频数分布图.

(3)分析这个频数分布图,你能得出什么结论?

【答案】(1)最小值是32,最大值是97;(2)答案见解析;(3)答案见解析.

【解析】试题分析:(1)根据50人的得分数据,即可得到测试成绩的最大值和最小值;(2)根据题意7个区间分别是[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),每个小区间的长度是10,统计出各小区间内的数据频数列表即可得频数分布图;(3)根据频数分布图可得该班智力测验成绩大体上呈两头小、中间大、左右对称的钟形状态,即可得到答案.

试题解析:(1)最小值是32,最大值是97.

(2)7个区间分别是[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),每个小区间的长度是10,统计出各小区间内的数据频数,列表如下:

区间

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

频数

1

6

12

14

9

6

2

频数分布图如下图所示.

(3)可以看出,该班智力测验成绩大体上呈两头小、中间大、左右对称的钟形状态,说明该班学生智力特别好或特别差的是极少数,而智力一般的是多数,这是一种最常见的分布.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如右图抛物线顶点在原点,圆(x﹣2)2+y2=22的圆心恰是抛物线的焦点,

(Ⅰ)求抛物线的方程;
(Ⅱ)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: (m>0)的离心率为 ,A,B分别为椭圆的左、右顶点,F是其右焦点,P是椭圆C上异于A、B的动点.

(1)求m的值及椭圆的准线方程;
(2)设过点B且与x轴的垂直的直线交AP于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0),若抛物线C上存在关于直线l对称的相异两点P和Q.

(1)求证:线段PQ的中点坐标为(2﹣p,﹣p);
(2)求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[7585)

[8595)

[95105)

[105115)

[115125)

频数

6

26

38

22

8

(1)作出这些数据的频率分布直方图

(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表)

(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:4x﹣3y+11=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(
A.
B.2
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin(θ﹣ ).
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面ρ≤4sin(θ﹣ )的公共点,求 x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且Sn=2﹣an , n∈N* , 设函数f(x)=log x,数列{bn}满足bn=f(an),记{bn}的前n项和为Tn . (Ⅰ)求an及Tn
(Ⅱ)记cn=anbn , 求cn的最大值.

查看答案和解析>>

同步练习册答案