精英家教网 > 高中数学 > 题目详情
18.在三角形ABC中,点M为底边BC的中点,AB=3,AC=4,则$\overrightarrow{AM}$•$\overrightarrow{BC}$=$\frac{7}{2}$.

分析 作图辅助,$\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$,从而解得.

解答 解:∵$\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$,
∴$\overrightarrow{AM}$•$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$($\overrightarrow{AC}$2-$\overrightarrow{AB}$2
=$\frac{1}{2}$(16-9)=$\frac{7}{2}$,
故答案为:$\frac{7}{2}$.

点评 本题考查了平面向量的线性运算与数量积的综合应用,作图辅助.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设P是△ABC所在平面内一点,且有$\overrightarrow{PA}$+3$\overrightarrow{PC}$=2$\overrightarrow{PB}$,则△ABC与△PBC的面积之比为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.求三直线l1:ax+y+1=0.l2:x+ay+1=0,l3:x+y+a=0不构成三角形的条件是a∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了解某市高三学生身高(单位:cm)情况,对全市高三学生随机抽取1000人进行了测量,经统计,得到如图的频率分布直方图(其中身高的分组区间分别为[150,160),[160,170),[170,180),[180,190])
(1)求a的值;
(2)在所抽取的1000人中,用分层抽样的方法在身高[170,190]中抽取一个容量为4的样本,将该样本看作一个整体,从中任意抽取2人,求这两人的身高恰好落在区间[170,180)的概率;
(3)若该市高三有20000人,根据此次测量统计结果,估算身高在区间[160,180)的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{m}$=(3,1),$\overrightarrow{n}$=(1,2),则|$\overrightarrow{m}$+$\overrightarrow{n}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求直线x-y+2=0与x2+y2=25的两个交点的坐标与它们之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,已知:A(cosx,sinx),B(1,1),O为坐标原点,$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,f(x)=|$\overrightarrow{OC}$|2
(Ⅰ)求f(x)的对称中心的坐标及单调递减区间;
(Ⅱ)若f(x0)=3+$\sqrt{2}$,x0∈[$\frac{π}{2}$,$\frac{3π}{4}$],求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数,如:2的差倒数是$\frac{1}{1-2}$=-1,-2的差倒数为$\frac{1}{1-(-2)}$=$\frac{1}{3}$.已知a1=-$\frac{1}{3}$,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.根据你对差倒数的理解完成下面问题:
(1)a2=$\frac{3}{4}$,a3=4,a4=-$\frac{1}{3}$;
(2)通过(1)中的结果计算a2013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正方形ABCD的边长为6,空间有一点M(不在平面ABCD内)满足|MA|+|MB|=10,则三棱锥C-ABM的体积的最大值是24.

查看答案和解析>>

同步练习册答案