精英家教网 > 高中数学 > 题目详情
1.已知tanα=2(α∈(0,π)),则cos($\frac{5π}{2}$+2α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.-$\frac{4}{5}$

分析 由条件利用诱导公式、二倍角的正弦公式、同角三角函数的基本关系,求得cos($\frac{5π}{2}$+2α)的值.

解答 解:∵tanα=2,α∈(0,π),
则cos($\frac{5π}{2}$+2α)=cos($\frac{π}{2}$+2α)=-sin2α=-2sinαcosα
=-$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=-$\frac{2tanα}{{tan}^{2}α+1}$═-$\frac{4}{4+1}$=-$\frac{4}{5}$,
故选:D.

点评 本题主要考查诱导公式、二倍角的正弦公式、同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.一个四面体的面都是直角三角形,且这些直角三角形中有三条直角边的长均为1,则这个四面体的表面积为(  )
A.2$\sqrt{2}$+2B.$\sqrt{2}+1$C.5D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三个数12(16),25(7),33(4),将它们按由小到大的顺序排列为33(4)<12(16)<25(7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=log3x+x-3零点所在大致区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:x2+2x-3≥0,q:ax2-2≥2x-ax(a∈R),若q的充分不必要条件是p,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$<$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)求线段AB的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)为奇函数,且当x≥0时,f(x)=$\frac{1}{{3}^{x}+2013}$-a,则f(log3$\frac{1}{2}$)=-$\frac{4029}{4058210}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若命题“存在实数x,使得(a-2)x2+2(a-2)x-4≥0成立”是假命题,则实数a的取值范围是(-2,2].

查看答案和解析>>

同步练习册答案