精英家教网 > 高中数学 > 题目详情

【题目】设 是定义在实数集 上的函数,满足条件 是偶函数,且当 时, ,则 的大小关系是( )
A.
B.
C.
D.

【答案】A
【解析】 是偶函数,所以 关于 轴对称,

时, ,函数单调递减, .

所以 .

.

所以答案是:A


【考点精析】利用函数单调性的性质和函数奇偶性的性质对题目进行判断即可得到答案,需要熟知函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从AB,C三个区中抽取7个工厂进行调查,已知A,BC区中分别有18,27,18个工厂

(Ⅰ)求从A,B,C区中分别抽取的工厂个数;

(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )
A.命题“若 ,则 ”的逆否命题为:“若 ,则
B.“ ”是“ ”的充分不必要条件
C.若 为假命题,则 均为假命题
D.命题 :“ ,使得 ”,则 :“ ,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的奇函数,且对任意实数 ,恒有 .当 时, .
(1)求证: 是周期函数;
(2)当 时,求 的解析式;
(3)计算 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数为( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分条件;
③命题“若m≤ ,则方程mx2+2x+2=0有实数根”的否命题为真命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对新研发的一种产品进行试销,得到如下数据表:

(1)根据上表求出回归直线方程 ,并预测当单价定为8.3元时的销量;
(2)如果该工厂每件产品的成本为5.5元,利用所求的回归方程,要使得利润最大,单价应该定为多少?
附:线性回归方程 中斜率和截距最小二乘估计计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①若 ,则
,都有
③若 是实数,则 的充分不必要条件;
④“ ” 的否定是“ ” ;
其中真命题的个数是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案