精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足Sn=2an+(-1)n,n≥1.
(1)写出数列{an}的前三项a1,a2,a3
(2)试判断数列{an+
2
3
(-1)n}
是否为等比数列,如果是,求出{an+
2
3
(-1)n}
的通项公式;如果不是,请说明理由;
(3)证明:对任意的整数m>4,有
1
a4
+
1
a5
+…+
1
am
7
8
分析:(1)是考查已知递推公式求前几项,属于基础题,需注意的是S1=a1,需要先求出a1才能求出a2,这是递推公式的特点.
(2)由已知化简得,an=2an-1+2(-1)n-1,进而可变为an+
2
3
•(-1)n
=2[an-1+
2
3
•(-1)n-1
],利用等比数列的定义可作出判断;
(3)的解答需要在代换后,适当的变形,利用不等式放缩法进行放缩.
解答:解:(1)当n=1时,有:S1=a1=2a1+(-1)⇒a1=1;
当n=2时,有:S2=a1+a2=2a2+(-1)2⇒a2=0;
当n=3时,有:S3=a1+a2+a3=2a3+(-1)3⇒a3=2;
综上可知a1=1,a2=0,a3=2;
(2){an+
2
3
(-1)n}
是等比数列,理由如下:
由已知得:an=Sn-Sn-1=2an+(-1)n-2an-1-(-1)n-1
化简得:an=2an-1+2(-1)n-1
上式可化为:an+
2
3
•(-1)n
=2[an-1+
2
3
•(-1)n-1
]
故数列{an+
2
3
(-1)n}
是以a1+
2
3
•(-1)
1=
1
3
为首项,公比为2的等比数列.
(3)由(2)可知:an=
2
3
[2n-2-(-1)n]

所以
1
a4
+
1
a5
+…+
1
am
=
3
2
[
1
22-1
+
1
23+1
+…+
1
2m-2-(-1)m
]
=
3
2
[
1
3
+
1
9
+
1
15
+
1
33
+
1
63
+…+
1
2m-2-(-1)m
]
=
1
2
[1+
1
3
+
1
5
+
1
11
+
1
21
+…]
1
2
(1+
1
3
+
1
5
+
1
10
+
1
20
+…)
=
1
2
[
4
3
+
1
5
(1-
1
2m-5
)
1-
1
2
]=
1
2
[
4
3
+
2
5
-
2
5
1
2m-5
]
=
13
15
-
1
5
•(
1
2
)m-5
13
15
=
104
120
105
120
=
7
8
点评:本题考查的递推数列较为典型,对数列有关公式的应用是高考考查的重点,要能熟练的应用.(3)中不等式证明中的放缩是一个难点,需要有扎实的基本功及一定的运算能力,对运算放缩能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案