精英家教网 > 高中数学 > 题目详情
1.已知全集U=R,集合A={x|y=$\sqrt{2x-{x^2}}}}$};集合B={y|y=ex,x∈R},则(∁RA)∩B=(  )
A.{x|x>2}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x<0}

分析 根据函数定义域和值域的定义,求出集合A,B,结合集合补集和交集运算的定义,可得答案.

解答 解:∵集合A={x|y=$\sqrt{2x-{x^2}}}}$}=[0,2],
∴∁RA=(-∞,0)∪(2,+∞),
又∵集合B={y|y=ex,x∈R}=(0,+∞),
∴(∁RA)∩B=(2,+∞),
故选:A.

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos(2x-$\frac{π}{3}$)-$\sqrt{3}$sinxcosx-2sinx,x∈[$\frac{π}{6}$,π],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设z=-2x+y,实数x,y满足$\left\{\begin{array}{l}x≤2\\ x-y≥-1\\ 2x+y≥k.\end{array}\right.$若z的最大值是0,则实数k=4,z的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式为an=2n+1,令bn=$\frac{1}{n}({a_1}+{a_2}+…+{a_n})$,则数列{bn}的前10项和T10=75.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.方程sin2x-acosx=0在x∈($\frac{π}{2}$,$\frac{4π}{3}$]有且仅有一解.则实数a的取值范围是(  )
A.a≤0B.a<-$\frac{3}{2}$或a=0C.a<-$\frac{3}{2}$D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在周长为6的△ABO中,∠AOB=60°,点P在边AB上,PH⊥OA于H(点H在边OA上),且PH=$\frac{\sqrt{3}}{2}$,OP=$\frac{\sqrt{7}}{2}$.则边OA的长为2.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简3($\overrightarrow{a}$-$\overrightarrow{b}$)+3(2$\overrightarrow{a}$+3$\overrightarrow{b}$)-($\overrightarrow{b}$-$\overrightarrow{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的单调区间:
(1)y=cos(2x+$\frac{π}{6}$);
(2)y=3sin($\frac{π}{3}$-$\frac{x}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若$\frac{π}{2}$<α<π,化简$\frac{cos(α-\frac{π}{2})}{si{n}^{2}(\frac{3π}{2}-α)\sqrt{1+ta{n}^{2}(3π+α)}}$-$\frac{sin(4π+α)\sqrt{1-si{n}^{2}(π+α)}}{co{s}^{2}(π-α)}$.

查看答案和解析>>

同步练习册答案