精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)用反证法证明:在上,不存在不同的两点,使得的图象在这两点处的切线相互平行.

【答案】(1).(2)不存在

【解析】试题分析:求出得增区间,得减区间;假设存在不同的两点满足题意,则化简可得,结合可得结果.

试题解析:(Ⅰ)

,解得

所以函数的单调递增区间为. 

(Ⅱ)假设存在不同的两点满足题意,则

化简得.

因为,所以

,所以,只需,这显然与相矛盾.

所以假设不成立,满足题意的两点是不存在的.

【方法点晴】本题主要考查的是利用导数研究函数的单调性、导数的几何意义,属于难题.利用导数研究函数的单调性进一步求函数的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.

(1)求证:

(2)若的中点,求异面直线所成角的余弦值;

(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足

1)求证:数列为等比数列;

2)若,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了人,按年龄分成5组(第一组:,第二组,第三组:,第四组:,第五组:),得到如图所示的频率分布直方图,已知第一组有6人

(1)求

(2)求抽取的人的年龄的中位数(结果保留整数);

(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1-5组,从这5个按年龄分的组合5个按职业分的组中每组各选派1人参加知识竞赛代表相应组的成绩,年龄组中1-5组的成绩分别为93,96,97,94,90,职业组中1-5组的成绩分别为93,98,94,95,90

i)分别求5个年龄组和5个职业组成绩的平均数和方差;

ii)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 是线段上一点.

点.

(1)确定的位置,使得平面平面

(2)若平面,设二面角的大小为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点是抛物线的焦点,在第一象限内的交点,且.

(1)求的方程;

(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】陕西省洛川地处北纬35°-36°,东经109°,昼夜温差,是国内外专家公认的世界最佳苹果优生区,是国家生态建设示范试点.近几年,果农为了提高经济效益,增加了广告和包装的投资费用,5年内果农投入的广告和包装费用(万元)与销售额(万元)之间有下面对应数据:

2

4

5

6

8

30

40

60

50

70

(1)假设之间线性相关,求回归直线方程;

(2)预测广告和包装费用为10(万元)时销售额是多少?

查看答案和解析>>

同步练习册答案