【题目】在平面直角坐标系中,,设的内切圆分别与边相切于点,已知,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)过的直线与轴正半轴交于点,与曲线E交于点轴,过的另一直线与曲线交于两点,若,求直线的方程.
【答案】(1)(2)或.
【解析】
(1)由内切圆的性质可知,,,转化,利用椭圆定义求椭圆方程;
(2)先求点的坐标,判断,再由,求得,所以,求得,再分斜率存在和斜率不存在两种情况,当斜率存在时,设直线与椭圆方程联立,得到根与系数的关系,并且根据求斜率.
解:(1)由内切圆的性质可知,,,
.
所以曲线是以为焦点,长轴长为的椭圆(除去与轴的交点).
设曲线则,
即
所以曲线的方程为.
(2)因为轴,所以,设,
所以,所以,则
因为,所以,
所以
所以,所以
设则
,所以
①直线斜率不存在时, 方程为
此时,不符合条件舍去.
②直线的斜率存在时,设直线的方程为.
联立,得
所以,
将代入得
,所以.
所以,
所以直线的方程为或.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:(为参数),,为直线上距离为的两动点,点为曲线上的动点且不在直线上.
(1)求曲线的普通方程及直线的直角坐标方程.
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是国家统计局给出的2014年至2018年我国城乡就业人员数量的统计图表,结合这张图表,以下说法错误的是( )
A.2017年就业人员数量是最多的
B.2017年至2018年就业人员数量呈递减状态
C.2016年至2017年就业人员数量与前两年比较,增加速度减缓
D.2018年就业人员数量比2014年就业人员数量增长超过400万人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的一个焦点与抛物线:的焦点重合,且离心率为.
(1)求椭圆的标准方程;
(2)过焦点的直线与抛物线交于,两点,与椭圆交于,两点,满足,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率,他从单位圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想极其重要,对后世产生了巨大影响.按照上面“割圆术”,用正二十四边形来估算圆周率,则的近似值是( )(精确到).(参考数据)
A.3.14B.3.11C.3.10D.3.05
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,直线l与椭圆C交于P,Q两点,且点M满足.
(1)若点,求直线的方程;
(2)若直线l过点且不与x轴重合,过点M作垂直于l的直线与y轴交于点,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)设是的反函数.当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求实数的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com