精英家教网 > 高中数学 > 题目详情

【题目】已知关于的不等式.

(1)当时,解不等式;

(2)如果不等式的解集为空集,求实数的取值范围.

【答案】(1) ;(2) .

【解析】试题分析1)当时,不等式变为。由绝对值的意义,按绝对值号内的的正负,分三种情况讨论:当时,不等式变为时,不等式变为,恒成立,所以符合不等式时,不等式变为取三种情况的并集可得原不等式的解集2)解法一:构造函数,原不等式的解集为空集, 的最小值比大于或等于,作出的图象. 只须的图象在的图象的上方,或重合, 。解法二:构造函数,讨论绝对值号内式子得正负去掉绝对值可得, ,求每一段函数的值域,可得函数的最小值=1 小于等于函数的最小值1.解法三,由不等式可得,当且仅当时,上式取等号,∴.

试题解析:解:(1)原不等式变为.

时,原不等式化为,解得

时,原不等式化为 .

时,原不等式化为,解得 .

综上,原不等式解集为.

2)解法一:作出的图象.

若使解集为空集,

只须的图象在的图象的上方,或重合,

,所以的范围为.

解法二:

时,

时,

时,

综上,原问题等价于 .

解法三:∵,当且仅当时,上式取等号,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

1命题,使得,则,都有

2)已知函数f(x)|log2x|abf(a)f(b)ab1

3若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β

4已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称

其中真命题的序号为______________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5 不等式选讲

已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线过点P(5,6),它在x轴上的截距是在y轴上的截距的2倍,则此直线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不共线的向量满足 .

1)若垂直,求的值;

2)当时,若存在两个不同的使得成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= 为奇函数,a为常数,
(1)求a的值;
(2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>( x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).

1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.

2)如果有触礁的危险,这艘海轮在处改变航向为东偏南方向航行,求的最小值.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+xlnx(a∈R)
(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;
(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)设,当时,若对任意,当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案