【题目】已知关于的不等式.
(1)当时,解不等式;
(2)如果不等式的解集为空集,求实数的取值范围.
【答案】(1) ;(2) .
【解析】试题分析:(1)当时,不等式变为。由绝对值的意义,按绝对值号内的的正负,分三种情况讨论:当时,不等式变为;当时,不等式变为,恒成立,所以符合不等式;当时,不等式变为。取三种情况的并集,可得原不等式的解集。(2)解法一:构造函数与,原不等式的解集为空集, 的最小值比大于或等于,作出与的图象. 只须的图象在的图象的上方,或与重合, 。解法二:构造函数,讨论绝对值号内式子得正负去掉绝对值可得, ,求每一段函数的值域,可得函数的最小值=1, 小于等于函数的最小值1.解法三,由不等式可得,当且仅当时,上式取等号,∴.
试题解析:解:(1)原不等式变为.
当时,原不等式化为,解得,∴
当时,原不等式化为,∴ .
当时,原不等式化为,解得,∴ .
综上,原不等式解集为.
(2)解法一:作出与的图象.
若使解集为空集,
只须的图象在的图象的上方,或与重合,
∴,所以的范围为.
解法二: ,
当时, ,
当时, ,
当时, ,
综上,原问题等价于,∴ .
解法三:∵,当且仅当时,上式取等号,∴.
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
(1)命题,使得,则,都有;
(2)已知函数f(x)=|log2x|,若a≠b,且f(a)=f(b),则ab=1;
(3)若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β;
(4)已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称.
其中真命题的序号为______________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)= 为奇函数,a为常数,
(1)求a的值;
(2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>( )x+m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).
(1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.
(2)如果有触礁的危险,这艘海轮在处改变航向为东偏南()方向航行,求的最小值.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+xlnx(a∈R)
(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;
(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com